Chromium Vapor Sensor for Monitoring Solid Oxide Fuel Cell Systems

Jeffrey W. Fergus Auburn University Materials Research & Education Center

UNIVERSITY

SAMUEL GINN College of Engineering

18th Annual Solid Oxide Fuel Cell (SOFC) Project Review Meeting Pittsburgh, PA 14 June 2017

Project Team

- Phase I
 - PI: Jeffrey Fergus
 - Graduate student: Moaiz Shahzad
 - Undergraduate student: Tommy Britt
- Planned for Phase II
 - Fuel Cell Energy, Hossein Ghezel-Ayagh
 - Naval Research Lab, Fritz Kub
 - University of Connecticut, Prabhakar Singh

Background

Source of Chromium

- Chromia formers used for interconnect due to high electronic conductivity of Cr_2O_3 relative to Al_2O_3 and SiO_2
- Oxidation of chromia scale (interconnect or balance of plant) to CrO_3 or $CrO_2(OH)_2$
- Chromium Deposition
 - Cr^{6+} reduced to Cr^{3+} (*i.e.* Cr_2O_3) on cathode

Cr-O-H Vapor Pressures

Vapor pressures higher in oxidizing conditions

> AUBURN UNIVERSITY

14 June 2017

DOE SOFC Program Review

Cr-O-H Vapor Pressures

Vapor pressures higher in oxidizing conditions

14 June 2017

DOE SOFC Program Review

Stability of CrO₃ / CrO₂(OH)₂

Vapor Pressure of $CrO_3 / CrO_2(OH)_2$

Vapor pressure of CrO₂(OH)₂ high at relatively low temperatures

14 June 2017

DOE SOFC Program Review

Chromium Poisoning in SOFCs

- Chromium poisoning
 - Oxidation of Cr₂O₃ to Cr⁶⁺ species (CrO₂(OH)₂ or CrO₃)
 - Deposition of Cr₂O₃ on cathode
 - Occurs even at IT-SOFC temperatures

K. Wang and J. Fergus, *J. Electrochem. Soc.* **157**, B1008 (2010).

14 June 2017

DOE SOFC Program Review

Reduce Chromium Poisoning

- Source
 - Non-chromia forming alloys
 - Alumina, silica high electrical resistance
 - NiO fast growth rate
 - Alloying additions
 - Mn to form outer spinel layer reduces chromia activity and thus vapor pressure
 - Coatings
- Cell
 - Cr poisoning resistant electrodes
- System
 - Cr getter

Chromium Getter

C. Liang et al., "Mitigation of Cathode Poisoning Using Chromium Getters," 17th Annual Solid Oxide Fuel Cell Project Review Meeting July 19-21, 2016, Pittsburgh PA, https://www.netl.doe.gov/events/conference-proceedings/2016/2016sofc

14 June 2017

DOE SOFC Program Review

Chromium Getter

J. Stevenson and B. Koeppel, SOFC Development at PNNL: Overview," 17th Annual Solid Oxide Fuel Cell Project Review Meeting July 19-21, 2016, Pittsburgh PA, https://www.netl.doe.gov/events/conference-proceedings/2016/2016sofc

14 June 2017

DOE SOFC Program Review

Project Objective

Phase I

 To design, fabricate and test a chromium sensor for monitoring the chromium vapor produced during the operation of an SOFC

Planned for Phase II

- Evaluate the sensors in an operating fuel cell system in collaboration with FuelCell Energy
- Evaluate sensor in chromium getter system developed at the University of Connecticut.
- Develop of smaller sensors based on thin-film deposition techniques will involve collaboration with the Naval Research Laboratory.

Chemical Sensor SOFC BOP / Stack

- Potentiometric Chemical Sensors
 - Solid electrolyte sensors have been demonstrated in aggressive environments
 - Oxygen dissolved in molten steel
 - Oxygen in exhaust gas form internal combustion engines
 - Thermodynamic not kinetic
 - Stable
 - Not microstructure dependent
- Auxiliary Electrode
 - Relate activity of target (Cr) to that of the mobile species (O²⁻ or Na⁺)
 - $Cr / O^{2-}: 2Cr + 3O^{2-} = Cr_2O_3 + 6e^{-1}$
 - Cr / Na⁺: 5Cr + $3Na_2CrO_4 = 6Na^+ + 4Cr_2O_3 + 6e^-$

DOE SOFC Program Review

Potentiometric Chemical Sensors

$$E = \frac{RT}{4F} \ln\left(\frac{pO_2^S}{pO_2^R}\right) = \frac{RT}{4F} \ln\left(\frac{1}{pO_2^R}\right) + pO_2^S$$

2O²⁻ = O₂^R + 4e⁻ Gas reference (e.g. Exhaust Gas Sensor) $20^{2-} = 0_2^{S} + 4e^{-}$ $2e^{-}$ $2e^{-}$

$$2Cr + 3O^{2-} = Cr_2O_3 + 6e^{-1}$$

Metal + oxide reference (e.g. Molten Steel Oxygen Probe)

 $2Cr + 3/2O_2 = Cr_2O_3$

$$K = \frac{a_{Cr_2O_3}}{a_{Cr}^2 \cdot p_{O_2}^{3/2}} \to p_{O_2}^{3/2} = \left(\frac{a_{Cr_2O_3}}{a_{Cr}^2 \cdot K}\right)^{2/3}$$

14 June 2017

DOE SOFC Program Review

SAMUEL GINN College of Engineering

UNIVERSITY

2/2

Auxiliary Electrode

$$2\underline{Cr} + 3O^{2-} = Cr_2O_3 + 6e^{-1}$$

Auxiliary Electrode

 $2Cr + 3O^{2-} = Cr_2O_3 + 6e^{-1}$

$$E = \frac{RT}{4F} \ln\left(\frac{pO_2^S}{pO_2^R}\right) = \frac{RT}{4F} \ln\left(\frac{\frac{a_{Cr_2O_3}}{a_{Cr}^2)_{alloy} \cdot K}}{\frac{a_{Cr_2O_3}}{a_{Cr_2O_3}}}\right) = \frac{RT}{4F} \ln\left(\frac{a_{Cr}^2)_{ref}}{a_{Cr}^2)_{alloy}}\right)$$

For $Cr + Cr_2O_3$ reference

$$E = -\frac{RT}{2F}\ln(a_{Cr})$$

DOE SOFC Program Review

Chemical Sensor SOFC BOP / Stack

- Sensor Parameters
 - Solid electrolytes
 - Yttria-stabilized zirconia
 - Beta" alumina
 - Auxiliary Electrodes
 - YCrO₃
 - Doping
 - $Na_2Cr_2O_4$
 - Composite electrodes
 - Geometries
 - Tubular
 - Planar

- Operational Parameters
 - Temperature
 - 500-800°C
 - Chromium
 - Temperature of Cr₂O₃
 - Water vapor

YSZ Auxiliary Electrode Reaction

$2YCrO_3 + 2H_2O + O^{2-} = 2CrO_2(OH)_2 + Y_2O_3 + 2e^{-}$

14 June 2017

DOE SOFC Program Review

Zr-Y-Cr-O Phase Equilibria

14 June 2017

DOE SOFC Program Review

UNIVERSITY Samuel Ginn College of Engineering

AUBURN

Sensor Schematics

Sensor Miniaturization

- Thin film fabrication
- Measure of local Cr vapor concentrations

14 June 2017

DOE SOFC Program Review

Beta Alumina Auxiliary Electrode Reaction

 $2Na_2CrO_4 + 2H_2O = 4Na^+ + 2CrO_2(OH)_2 + O_2 + 2e^-$

14 June 2017

DOE SOFC Program Review

Synthesis of YCrO₃

- Co-precipitation
- Y(OH)₃ and Cr(NO₃)₃•9H₂O dissolved in aqueous solutions of HNO₃ and NH₄OH
- Stirred overnight
- Dried for 24 hours at 80°C
- Calcined for 2 hours at 800°C
- Sintered for 3 hours at 1200-1500°C

Synthesis of YCrO₃

A-Site Doping of YCrO₃

Doped chromites used as ceramic interconnects in SOFCs

> AUBURN UNIVERSITY

14 June 2017

J.W. Fergus, Solid State Ionics 171 (2004) 1.

J.L. Bates, L.A. Chick and W.J. Weber, Solid State Ionics 52 (1992) 235.

DOE SOFC Program Review

B-Site Doping of YCrO₃

W. Li, M. Gong and X. Liu, J. Power Sources 241 (2013) 494.

14 June 2017

DOE SOFC Program Review

B-Site Doping of YCrO₃

K.J. Yoon, J.W. Stevenson and O.A. Marina, *Solid State Ionics* **193** (2011) 60; *J. Power Sources* **196** (2011) 8531.

14 June 2017

DOE SOFC Program Review

Doped YCrO₃ as Electrode

W. Li, M. Gong and X. Liu, J. Electrochem. Soc. 161 (2014) F551.

AUBURN UNIVERSITY

14 June 2017

DOE SOFC Program Review

Summary

- Chromium sensor for health monitoring in SOFC balance of plant
 - Solid electrolyte potentiometric
 - Demonstrated performance in aggressive environments
 - Potential for miniaturization
 - Auxiliary electrode for Cr sensitivity

Acknowledgment

 DOE NETL Solid Oxide Fuel Cell Core Technology and Innovative Concepts award number DE-FE0028183 (Arun C. Bose)

Disclaimer: Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability of responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of the author expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DOE SOFC Program Review

Thank you for your attention

14 June 2017

DOE SOFC Program Review